
Lesson 02. Bash Introduction

By Yuriy Bezgachnyuk, November 2021

DevOps
School

Linux Shells Overview

• Linux has a variety of different shells:

• Bourne Shell (sh)

• C Shell (csh)

• Korn Shell (ksh)

• TC Shell (tcsh)

• Bourne Again Shell (bash)

• Z Shell (zsh)

• …

• Certainly, the most popular shell is “bash”. Bash is an sh-compatible shell that incorporates
useful features from the Korn shell (ksh) and C shell (csh)

• It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools standard.

• It offers functional improvements over sh for both programming and
interactive use

BASH Syntax

• Latin alphabet

• Arabic digits

• Punctuation symbols

• Some keywords

• …

BASH Syntax

• On the first line

• #!/bin/bash

• Tells the operating system that the following will be a script and not a regular
text file

VARIABLES (1)

• We can use variables as in any programming languages. Their values are always
stored as strings, but there are mathematical operators in the shell language that will
convert variables to numbers for calculations.

• There is no needed to declare variables. Just assign a value to its reference will create it

• How to use variables

Value assignment and
variable declaration

Using Variable’s value

VARIABLES (2)

• The shell programming language does not type-cast its variables.

• This means that a variable can hold number data or character data

• Switching the TYPE of a variable can lead to confusion for the writer of the
script or someone trying to modify it, so it is recommended to use a variable
for only a single TYPE of data in a script

• \ is the bash escape character and it preserves the literal value of the next
character that follows

count=0

count=Sunday

VARIABLES (3)

• When assigning character data containing spaces or special characters, the data
must be enclosed in either single or double quotes.

• Using double quotes to show a string of characters will allow any variables in
the quotes to be resolved.

• Using single quotes to show a string of characters will not allow variable
resolution.

var=“test string”

newvar=“Value of var is $var”

echo $newvar

var=’test string’

newvar=’Value of var is $var’

echo $newvar

ENVIRONMENTAL VARIABLES (1)

• There are two types of variables:

• Local Variables

• Environmental Variables

• Environmental variables are set by the system and can usually be found by using
the env command. Environmental variables hold special values

• Environmental variables are defined in /etc/profile, /etc/profile.d/ and
~/.bash_profile. These files are the initialization files, and they are read when bash
shell is invoked.

• When a login shell exits, bash reads ~/.bash_logout.

• The startup is more complex; for example, if bash is used interactively, then
/etc/bashrc or ~/.bashrc are read.

• See the man page for more details.

ENVIRONMENTAL VARIABLES (2)

Name Description

PATH The search path for commands. It is a colon-separated list of directories that are
searched when you type a command

HOSTNAME Name of the host (computer)

USER, LOGNAME Current logged in user

PS1 Sequence of characters shown before the prompt

PWD Current working directory

SHELL The path to the current command shell

…

ENVIRONMENTAL VARIABLES (1)

• PS1: sequence of characters shown before the prompt

• \t – hour

• \d – date

• \w – current directory

• \W – last part of current directory

• \u – user name

• \$ - prompt character

VARIABLES

• The read command allows you to prompt for input and store it in a variable

SPECIAL VARIABLES

Parameter Description

$0 Name of the current shell script

$1-$9 Positional parameters 1 through 9

${10} Positional parameter 10

$# The number of positional parameters

$* All positional parameters, “$*” is one string

$@ All positional parameters, “$@” is a set of strings

$? Return status of most recently executed command

$$ Process id of current process

ENVIRONMENTAL VARIABLES

• We have a next bash script

• #!/bin/bash

• echo $#

• echo $0

• echo $1

COMMAND SUBSTITUTION

• The backquote “`” is different from the single quote “`”.

• It is used for command substitution: `command`

#!/bin/bash

list=`ls -l`

echo $list

ARITHMETIC EVALUATION

• The let statement can be used to do mathematical functions:

• An arithmetic expression can be evaluated by $[expression] or $((expression))

• ATTENTION, PLEASE BASH DON’T KNOW HOW TO WORK WITH floating point units ☺

ARITHMETIC EVALUATION

#!/bin/bash

echo $((100 / 3))

myvar="56"

echo $(($myvar + 12))

echo $(($myvar - $myvar))

myvar=$(($myvar + 1))

echo $myvar

CONDITIONAL STATEMENTS

• Conditionals let us decide whether to perform an action or not, this decision is
taken by evaluating an expression. The most basic form is:

• the elif (else if) and else sections are optional

• Put spaces after [and before], and around the operators and operands.

EXPRESSION (1)

• An expression can be:

• String comparison

• Numeric comparison

• File operators and Logical operators and it is represented by [expression]:

• String Comparisons:

Expression Description

= compare if two strings are equal

!= compare if two strings are not equal

-n evaluate if string length is greater than zero

-z evaluate if string length is equal to zero

EXPRESSION (2)

• Number Comparisons

Expression Description

-eq compare if two numbers are equal

-ge compare if one number is greater than or equal to a number

-le compare if one number is less than or equal to a number

-ne compare if two numbers are not equal

-gt compare if one number is greater than another number

-lt compare if one number is less than another number

EXPRESSION

if ["$myvar" -eq 3]

then echo "myvar eq 3 as num"

fi

if ["$myvar" = "3"]

then echo "myvar eq 3 as srt"

fi

if [-z $1]; then echo "Empty Parameter"; fi

RELATIONAL OPERATORS

Meaning Numeric String

Greater than -gt

Greater than or equal -ge

Less than -lt

Less than or equal -le

Equal -eg = or ==

Not equal -ne !=

str1 is less than str2 str1 < str2

str1 is greater str2 str1 > str2

String length is greater than zero -n str

String length is zero -z str

RELATIONAL OPERATORS

• Script

LANGUAGE ELEMENTS

• Control structures

• Repetition

• do-while, repeat-until

• for … in

• Select

• Functions

• Trapping signals

LANGUAGE ELEMENTS

• Purpose:

• To execute commands in “command-list” as long as “expression” evaluates to
true

• Syntax:

• while [expression]

• do

• command-list

• done

LANGUAGE ELEMENTS

#!/bin/bash

COUNTER=0

while [$COUNTER -lt 10]

do

echo “The counter is $COUNTER”

let COUNTER=$COUNTER+1

done

LANGUAGE ELEMENTS

#!/bin/bash

for x in one two three three four; do

echo "number $x"

done

#!/bin/bash

for myfile in /etc/r*; do

if [-d "$myfile"]

then echo "$myfile (dir)"

else

echo "$myfile"

fi

done

LANGUAGE ELEMENTS

• Repeat until true
myvar=0

while [$myvar -ne 10]; do

echo "$myvar"

myvar=$(($myvar + 1))

done

• Repeat until the value is false
myvar=0

until [$myvar -eq 10]

do

echo $myvar

myvar=$(($myvar + 1))

done

LANGUAGE ELEMENTS

• Variable in function
#!/bin/bash

myvar="hello"

myfunc() {

myvar="one two three"

for x in $myvar; do

echo $x

done

}

myfunc

echo "\$myvar = $myvar \$x = $x"

• Result one two three three

LANGUAGE ELEMENTS

• A local variable in a function
#!/bin/bash

myvar="hello"

myfunc() {

local x

local myvar="one two three"

for x in $myvar; do

echo $x

done

}

myfunc

echo "\$myvar = $myvar \$x = $x"

• Result hello

REFERENCES & SOURCES

https://www.gnu.org/software/bash/manual/

SoftServe Confidential

	Default Section
	Slide 1: DevOps School
	Slide 2: Linux Shells Overview
	Slide 3: BASH Syntax
	Slide 4: BASH Syntax
	Slide 5: VARIABLES (1)
	Slide 6: VARIABLES (2)
	Slide 7: VARIABLES (3)
	Slide 8: ENVIRONMENTAL VARIABLES (1)
	Slide 9: ENVIRONMENTAL VARIABLES (2)
	Slide 10: ENVIRONMENTAL VARIABLES (1)
	Slide 11: VARIABLES
	Slide 12: SPECIAL VARIABLES
	Slide 13: ENVIRONMENTAL VARIABLES
	Slide 14: COMMAND SUBSTITUTION
	Slide 15: ARITHMETIC EVALUATION
	Slide 16: ARITHMETIC EVALUATION
	Slide 17: CONDITIONAL STATEMENTS
	Slide 18: EXPRESSION (1)
	Slide 19: EXPRESSION (2)
	Slide 20: EXPRESSION
	Slide 21: RELATIONAL OPERATORS
	Slide 22: RELATIONAL OPERATORS
	Slide 23: LANGUAGE ELEMENTS
	Slide 24: LANGUAGE ELEMENTS
	Slide 25: LANGUAGE ELEMENTS
	Slide 26: LANGUAGE ELEMENTS
	Slide 27: LANGUAGE ELEMENTS
	Slide 28: LANGUAGE ELEMENTS
	Slide 29: LANGUAGE ELEMENTS
	Slide 30: REFERENCES & SOURCES
	Slide 31

