Linux administration
with Bash. Lection 2

Bash

- Scripting
- Q&A.

Bash. Scripting parameters.

A bash shell script can have parameters. The numbering you see in the script below continues if you
have more parameters. You also have special parameters containing the number of parameters, a
string of all of them, and also the process id, and the last return code. The man page of bash has a full
list.

#1/bin/bash

echo The first argument is 51 [student@

echo The second argument is $2 Fotudente

echo The third argument is $3 The first argument i
echo \S S$ PID of the script [l

echo \# S# count arguments
echo \? S? last return code
echo * $* all the arguments

Bash. Scripting parameters.

Once more the same script, but with Here is another example, where we use $0.
only two parameters The SO parameter contains the name of the script.
!/bin/bash

echo This script is called SO
echo The first argument is 51
echo The second argument is $2
echo The third argument is 53
echo \S SS PID of the script
echo \# S# count arguments
echo \? S? last return code

Irn

el - echo * $* all the arguments

nect . 412 19216888 151 (

[student@ 1S ./parameters_2.sh dev
This script is called ./parameters_2.sh

The first argument i1s dev

The second a ent is

The third argument is
§ 3606 PID of the script
o count arguments
0 last return code
dev all the arguments

[student@ 15 B

Bash. Shift through parameters.

The shift statement can parse all
parameters one by one. This is a
sample script.

#1/bin/bash
echo my name is SO
l:f["S#" o "0"] then
echo You have to give at

uick connect... / ¥ [%]2.192.168.88.151 (student
least one parameter. i EEeeao s
. [student@localhost ~]1% ./ dev sec ops 1 2 3
) exit 1 my name is ./parameters_3
fi fYou gave me dev
A You gave me sec
while ((5#)) You gave me ops
do You gave me :
You gave me
echo You gave me 51 ol
shift [student@localhost ~

done

Bash. Runtime input.
You can ask the user for input with the read command in a script

#1/bin/bash

echo my name is $0

echo -n Enter a number:

read number

echo There are Snumber trainees

uick connect... R (2]2 192168 88 151 (student)

[student@localhost ~]1% ./runtime.sh
my name is ./runtime.sh

jEnter a number:150
There are 150 trainees
[student@localhost ~]$ N

Bash. Sourcing a config file.

The source can be used to source a configuration file. Below a sample configuration file for an
application

The config file of BashApp Output:
Enter the path here
BashAppPath=/home/student/myApp
Enter the number of trainees here uick connect... AN [~]2 19216888151 (student)
trainees=150 [student@localhost ~]$ 1s -1
total 44
j-rw-rw-r--. 1 student student 134 Sep 1/
. . I F (r-x. 1 student student 108 Sep 14
And here an application that uses this file: | Sl e
¢. 1 student student 64 Sep ¢
1. student student 4 Sep
1/hi ¢. 1 student student 6 Sep 14
#./blﬂ/bGSh v ¢. 1 student student 6 Sep 1!
| ¢. 1 student student 256 Sep :
¢. 1 student student 249 Sep 1!
Welcome to the BashApp (. 1 student student 74 Sep ¢
. q PWX WX 5 qtudent student 114 Sep :
application | [student@localhost ~1$./BashApp.sh
There are meef:
[student@lc
. ./BashApp.conf

echo There are Strainees trainees

Bash. Get script options with getopts.

The getopts function allows you to parse options given to a command. The following script allows for

any combination of the options a, band c

#1/bin/bash
while getopts ":abc" option;
do
case Soption in
a)
echo received -a ;;
b)
echo received -b ;;

c)
¥)

echo received -¢ ;;

echo "invalid option -SOPTARG"
esac
done

oo
77

uick connect...

[student@localhost ~

received -a
received -b

freceived -c
[student@localhost ~

tion

d option

finvalid optio

[student@loc
received -a
received -b

freceived -c

d option
17d option
id option

[student@localhost ~

received -a
received -b
i id option

invalid option

[student@loca

Output:

./options.

./options.

./options.

./options.

AN (212 19216888151 (student)

sh -abc

sh -defcl

sh -abcdef

sh -abde

Bash. Get script options with getopts.

You can also check for options that need an argument, as this example shows.
#!1/bin/bash

) ., D Output:
while getopts ":ab:c:" option; |
do lwick connect... 72 [%]2.192.168.88.151 (student)
: . [student@loca t ~ ./arg_options.sh -a -b dev -c ops
case Soption in e ceived
a) received -b with dev
received s
echo received -a FH [student@ ~1$./arg_options.sh -abc ops
received
b) received
q q student@ ./arg_options. -abcops
echo received -b with SOPTARG ;; S FATO-ORTTONS 51 ~abeops
C) received W T
[stur__ient@ ./arg_options. -azcnbcops
echo received -c with SOPTARG ;; received
invalid option -z
.') received -c '-r'th nbcops
. [qtudent@ ./arg_options.sh -nmopab devops -c cool
echo "option -SOPTARG needs an argument" ;; id option
* 1d option
) 1d option
echo "invalid option -SOPTARG" ;; B
esac received -b with devops

received th cool
done [student@localhost ~1$ I

Bash. Additional scripting elements.

eval reads arguments as input to the shell (the resulting commands are executed).
This allows using the value of a variable as a variable.

> answer=42

> word=answer

> eval x=\SSword ; echo Sx
>42

In bash the arguments can be quoted

> answer=42

> word=answer

> eval “y=\SSword” ; echo Sx
>42

Bash. Additional scripting elements.

Sometimes the eval is needed to have correct parsing of arguments. Consider this example where
the date command receives one parameter 1 week ago

[student@localhost ~]$ date --date="1 week ago"
Mon Sep 7 23:38:02 EEST 2020

When we set this command in a variable, then executing that variable fails unless we use eval

[student@localhost ~]S lastweek="date --date="1 week ago"'
[student@localhost ~]S Slastweek

date: extra operand ‘ago’’

Try 'date --help' for more information.

[student@localhost ~]S eval Slastweek

Mon Sep 7 23:44:33 EEST 2020

[student@localhost ~]S

Bash. Additional scripting elements.

The (()) allows for evaluation of numerical expressions

>((42 > 33)) && echo true || echo false

> true

> ((42 > 1201)) && echo true | | echo false

> false

>var42=42

>((42 ==var42)) && echo true | | echo false
> true

> ((42 == Svar42)) && echo true | | echo false
> true

>var42=33

>((42 ==var42)) && echo true | | echo false
> false

Bash. Additional scripting elements.

The let built-in shell function instructs the shell
to perform an evaluation of arithmetic
expressions.

[student@localhost ~]S let x="3 + 4" ; echo Sx
7

[student@localhost ~]S let x="10 + 100/10" ; echo Sx
20

[student@localhost ~]S let x="10-2+100/10" ; echo $x
18

[student@localhost ~]S let x="10*2+100/10" ; echo Sx
30

There is a difference between assigning a variable
directly, or using let to evaluate the arithmetic
expressions (even if it is just assigning a value).

The shell can also convert between different

bases.
[student@localhost ~]S let x="0xFF" ; echo Sx
255
[student@localhost ~]S let x="0xC0" ; echo $x
192
[student@localhost ~]S let x="0xA8" ; echo $x
168
[student@localhost ~]S let x="8#70" ; echo Sx
56
[student@localhost ~]S let x="8#77" ; echo Sx
63
[student@localhost ~]S let x="16#c0" ; echo $x
192

[student@localhost ~]S dec=15 ; oct=017 ; hex=0x0f
[student@localhost ~]S echo Sdec Soct Shex

15 017 oxof

[student@localhost ~]S let dec=15 ; let oct=017 ; let hex=0x0f
[student@localhost ~]S echo Sdec Soct Shex

151515

Bash. Additional scripting elements.

#1/bin/bash
Job Helpdesk Advisor :-)
echo -n "What job do you want ? "

read job
case Sjob in
You can sometimes "devops")
) . . echo "Excellent"
simplify nested if .
statements with a "dev")
case construct echo "Good"

"test")

echo "not bad."
"frontend")

echo "Really???"

%)
echo "Make your choise once more from: devops, dev, test and frontend"

oo
124

esac

Bash. Additional scripting elements.

Shell functions can be used to group commands in a logical way.

#1/bin/bash

function greetings {

echo Hello World!

echo and hello to SUSER to!

}

echo We will now call a function
greetings

echo The end

uick connect... O [2]4.192.168.88.151 (student)

[student@localhost ¥]$./function.sh
We will now call a function
Hello World!

and hello to student to!
The end

[student@localhost ~1% |

Bash. Additional scripting elements.

A shell function can also receive parameters

uick connect... PN (4 192 168 88151 (student)
#!/bin/bash [student@localhost ~]%$./func_param.sh
function plus { 3+10 =13
let result="51 + S2" go;db:Sg e
echo 51+ 52 = Sresult [student@localhost ~1$ [
}
uick connect...
plus 3 10
plusab
plus good 88

[student@localhost ~]% |

Bash. Shell expansions.Quotes

Notice that double quotes still allow the parsing of variables, whereas single quotes prevent this.

S MyVar=555

S echo SMyVar
555

S echo "SMyVvar"
555

S echo 'SMyVar'
MyVar

The bash shell will replace variables with their value in double quoted lines, but not in single quoted
lines.

S city=Burtonville

S echo "We are in Scity today."
We are in Burtonville today.

S echo 'We are in Scity today.'
We are in Scity today.

Bash. Shell expansions. Backticks or single quotes

Single embedding can be useful to avoid changing your current directory. The screenshot below uses
backticks instead of dollar-bracket to embed.

S echo ‘cd /etc; Is -d * | grep pass®
passwd passwd- passwd.OLD
S

Placing the embedding between backticks uses one character less than the dollar and parenthesis
combo. Be careful however, backticks are often confused with single quotes. The technical difference
between 'and " is significant!

S echo ‘varl=5;echo Svarl®
5

S echo 'var1=5;echo Svarl'
varl=5;echo Svarl

s

Bash. Shell expansions.

Read a File:
You can read any file line by line in bash by using loop. Create a file named, ‘read_file.sh’ and add the following code to

read an existing file named, ‘book.txt’.

GNU nano 2.3.1 File: read file.sh

21 /bin/bash
file='books.txt"
Bwhile read line; do

uick connect... VOSNY []2.192.168.88.151 (student)

student@localhost~$ bash read_file.sh
Project Phoenix
Continious integration

Working with Jenkins
Ansible forever
student@localhost~$ |

Q&A

Thank you!

