
Linux administration
with Bash. Lection 2

Bash

- Scripting

- Q&A.

Bash. Scripting parameters.

A bash shell script can have parameters. The numbering you see in the script below continues if you
have more parameters. You also have special parameters containing the number of parameters, a
string of all of them, and also the process id, and the last return code. The man page of bash has a full
list.

#!/bin/bash
echo The first argument is $1
echo The second argument is $2
echo The third argument is $3
echo \$ $$ PID of the script
echo \# $# count arguments
echo \? $? last return code
echo * $* all the arguments

Bash. Scripting parameters.

Once more the same script, but with
only two parameters

Here is another example, where we use $0.
The $0 parameter contains the name of the script.

!/bin/bash
echo This script is called $0
echo The first argument is $1
echo The second argument is $2
echo The third argument is $3
echo \$ $$ PID of the script
echo \# $# count arguments
echo \? $? last return code
echo * $* all the arguments

Bash. Shift through parameters.

The shift statement can parse all
parameters one by one. This is a
sample script.

#!/bin/bash
echo my name is $0
if ["$#" == "0"] then

echo You have to give at
least one parameter.

exit 1
fi
while (($#))
do

echo You gave me $1
shift

done

Bash. Runtime input.

You can ask the user for input with the read command in a script

#!/bin/bash
echo my name is $0
echo -n Enter a number:
read number
echo There are $number trainees

Bash. Sourcing a config file.

The source can be used to source a configuration file. Below a sample configuration file for an
application

The config file of BashApp
Enter the path here
BashAppPath=/home/student/myApp
Enter the number of trainees here
trainees=150

Output:

#!/bin/bash

Welcome to the BashApp
application

. ./BashApp.conf
echo There are $trainees trainees

And here an application that uses this file:

Bash. Get script options with getopts.

The getopts function allows you to parse options given to a command. The following script allows for
any combination of the options a, b and c

#!/bin/bash
while getopts ":abc" option;
do
case $option in
a)

echo received -a ;;
b)

echo received -b ;;
c)

echo received -c ;;
*)

echo "invalid option -$OPTARG" ;;
esac

done

Output:

Bash. Get script options with getopts.

You can also check for options that need an argument, as this example shows.

#!/bin/bash
while getopts ":ab:c:" option;
do
case $option in
a)
echo received -a ;;
b)
echo received -b with $OPTARG ;;
c)
echo received -c with $OPTARG ;;
:)
echo "option -$OPTARG needs an argument" ;;
*)
echo "invalid option -$OPTARG" ;;

esac
done

Output:

Bash. Additional scripting elements.

eval reads arguments as input to the shell (the resulting commands are executed).
This allows using the value of a variable as a variable.

> answer=42
> word=answer
> eval x=\$$word ; echo $x
> 42

In bash the arguments can be quoted

> answer=42
> word=answer
> eval “y=\$$word” ; echo $x
> 42

Bash. Additional scripting elements.

Sometimes the eval is needed to have correct parsing of arguments. Consider this example where
the date command receives one parameter 1 week ago

[student@localhost ~]$ date --date="1 week ago"
Mon Sep 7 23:38:02 EEST 2020

When we set this command in a variable, then executing that variable fails unless we use eval

[student@localhost ~]$ lastweek='date --date="1 week ago"'
[student@localhost ~]$ $lastweek
date: extra operand ‘ago"’
Try 'date --help' for more information.
[student@localhost ~]$ eval $lastweek
Mon Sep 7 23:44:33 EEST 2020
[student@localhost ~]$

Bash. Additional scripting elements.

The (()) allows for evaluation of numerical expressions

> ((42 > 33)) && echo true || echo false
> true
> ((42 > 1201)) && echo true || echo false
> false
> var42=42
> ((42 == var42)) && echo true || echo false
> true
> ((42 == $var42)) && echo true || echo false
> true
> var42=33
> ((42 == var42)) && echo true || echo false
> false

Bash. Additional scripting elements.

The let built-in shell function instructs the shell
to perform an evaluation of arithmetic
expressions.

[student@localhost ~]$ let x="3 + 4" ; echo $x
7
[student@localhost ~]$ let x="10 + 100/10" ; echo $x
20
[student@localhost ~]$ let x="10-2+100/10" ; echo $x
18
[student@localhost ~]$ let x="10*2+100/10" ; echo $x
30

The shell can also convert between different
bases.

[student@localhost ~]$ let x="0xFF" ; echo $x
255
[student@localhost ~]$ let x="0xC0" ; echo $x
192
[student@localhost ~]$ let x="0xA8" ; echo $x
168
[student@localhost ~]$ let x="8#70" ; echo $x
56
[student@localhost ~]$ let x="8#77" ; echo $x
63
[student@localhost ~]$ let x="16#c0" ; echo $x
192

There is a difference between assigning a variable
directly, or using let to evaluate the arithmetic
expressions (even if it is just assigning a value).

[student@localhost ~]$ dec=15 ; oct=017 ; hex=0x0f
[student@localhost ~]$ echo $dec $oct $hex
15 017 0x0f
[student@localhost ~]$ let dec=15 ; let oct=017 ; let hex=0x0f
[student@localhost ~]$ echo $dec $oct $hex
15 15 15

Bash. Additional scripting elements.

You can sometimes
simplify nested if
statements with a
case construct

#!/bin/bash
Job Helpdesk Advisor :-)
echo -n "What job do you want ? "
read job
case $job in

"devops")
echo "Excellent"

;;
"dev")

echo "Good"
;;
"test")

echo "not bad."
;;
"frontend")

echo "Really???"
;;
*)

echo "Make your choise once more from: devops, dev, test and frontend"
;;

esac

Bash. Additional scripting elements.

Shell functions can be used to group commands in a logical way.

#!/bin/bash
function greetings {
echo Hello World!
echo and hello to $USER to!
}
echo We will now call a function
greetings
echo The end

Bash. Additional scripting elements.

A shell function can also receive parameters

#!/bin/bash
function plus {
let result="$1 + $2"
echo $1 + $2 = $result
}

plus 3 10
plus a b
plus good 88

Bash. Shell expansions.Quotes

Notice that double quotes still allow the parsing of variables, whereas single quotes prevent this.

$ MyVar=555
$ echo $MyVar
555
$ echo "$MyVar"
555
$ echo '$MyVar'
MyVar

The bash shell will replace variables with their value in double quoted lines, but not in single quoted
lines.

$ city=Burtonville
$ echo "We are in $city today."
We are in Burtonville today.
$ echo 'We are in $city today.'
We are in $city today.

Bash. Shell expansions. Backticks or single quotes

Single embedding can be useful to avoid changing your current directory. The screenshot below uses
backticks instead of dollar-bracket to embed.

$ echo `cd /etc; ls -d * | grep pass`
passwd passwd- passwd.OLD
$

Placing the embedding between backticks uses one character less than the dollar and parenthesis
combo. Be careful however, backticks are often confused with single quotes. The technical difference
between ' and ` is significant!

$ echo `var1=5;echo $var1`
5
$ echo 'var1=5;echo $var1'
var1=5;echo $var1
$

Bash. Shell expansions.

Read a File:
You can read any file line by line in bash by using loop. Create a file named, ‘read_file.sh’ and add the following code to
read an existing file named, ‘book.txt’.

Q & A

Thank you!

