
Containerization.
Docker.
Lection 1.

Docker overview. Docker platform.

Docker is an open platform for developing, shipping, and running applications.

Docker enables you to separate your applications from your infrastructure so you can deliver

software quickly.

With Docker, you can manage your infrastructure in the same ways you manage your applications.

By taking advantage of Docker’s methodologies for shipping, testing, and deploying code quickly,

you can significantly reduce the delay between writing code and running it in production.

Docker overview. Docker platform.

Docker provides the ability to package and run an application in a loosely isolated environment
called a container. The isolation and security allow you to run many containers simultaneously on
a given host. Containers are lightweight because they don’t need the extra load of a hypervisor,
but run directly within the host machine’s kernel. This means you can run more containers on a
given hardware combination than if you were using virtual machines. You can even run Docker
containers within host machines that are actually virtual machines!

Docker provides tooling and a platform to manage the lifecycle of your containers:

Develop your application and its supporting components using containers.
The container becomes the unit for distributing and testing your application.
When you’re ready, deploy your application into your production environment, as a container or
an orchestrated service. This works the same whether your production environment is a local data
center, a cloud provider, or a hybrid of the two.

Docker Engine.

Docker Engine is a client-server application with these
major components:

A server which is a type of long-running program called a
daemon process (the dockerd command).

A REST API which specifies interfaces that programs can
use to talk to the daemon and instruct it what to do.

A command line interface (CLI) client
(the docker command).

Docker architecture.

Docker uses a client-server architecture. The Docker client talks to the Docker daemon, which does the heavy lifting
of building, running, and distributing your Docker containers. The Docker client and daemon can run on the same
system, or you can connect a Docker client to a remote Docker daemon. The Docker client and daemon
communicate using a REST API, over UNIX sockets or a network interface.

https://docs.docker.com/get-started/overview/

Docker architecture.

The Docker daemon
The Docker daemon (dockerd) listens for Docker API requests and manages Docker objects such as images,
containers, networks, and volumes. A daemon can also communicate with other daemons to manage Docker
services.

The Docker client
The Docker client (docker) is the primary way that many Docker users interact with Docker. When you use
commands such as docker run, the client sends these commands to dockerd, which carries them out. The docker
command uses the Docker API. The Docker client can communicate with more than one daemon.

Docker registries
A Docker registry stores Docker images. Docker Hub is a public registry that anyone can use, and Docker is
configured to look for images on Docker Hub by default. You can even run your own private registry.

When you use the docker pull or docker run commands, the required images are pulled from your configured
registry. When you use the docker push command, your image is pushed to your configured registry.

https://docs.docker.com/get-started/overview/

Docker architecture.

Docker objects
When you use Docker, you are creating and using images, containers, networks, volumes, plugins, and other objects. This
section is a brief overview of some of those objects.
IMAGES
An image is a read-only template with instructions for creating a Docker container. Often, an image is based on another image,
with some additional customization. For example, you may build an image which is based on the ubuntu image, but installs the
Apache web server and your application, as well as the configuration details needed to make your application run.
You might create your own images or you might only use those created by others and published in a registry. To build your own
image, you create a Dockerfile with a simple syntax for defining the steps needed to create the image and run it. Each
instruction in a Dockerfile creates a layer in the image. When you change the Dockerfile and rebuild the image, only those layers
which have changed are rebuilt. This is part of what makes images so lightweight, small, and fast, when compared to other
virtualization technologies.
CONTAINERS
A container is a runnable instance of an image. You can create, start, stop, move, or delete a container using the Docker API or
CLI. You can connect a container to one or more networks, attach storage to it, or even create a new image based on its current
state.
By default, a container is relatively well isolated from other containers and its host machine. You can control how isolated a
container’s network, storage, or other underlying subsystems are from other containers or from the host machine.
A container is defined by its image as well as any configuration options you provide to it when you create or start it. When a
container is removed, any changes to its state that are not stored in persistent storage disappear.

Examples of docker run command

The following command runs an ubuntu container, attaches interactively to your local command-line session, and runs
/bin/bash.
$ docker run -i -t ubuntu /bin/bash
When you run this command, the following happens (assuming you are using the default registry configuration):
If you do not have the ubuntu image locally, Docker pulls it from your configured registry, as though you had run docker
pull ubuntu manually.
Docker creates a new container, as though you had run a docker container create command manually.
Docker allocates a read-write filesystem to the container, as its final layer. This allows a running container to create or
modify files and directories in its local filesystem.
Docker creates a network interface to connect the container to the default network, since you did not specify any
networking options. This includes assigning an IP address to the container. By default, containers can connect to
external networks using the host machine’s network connection.
Docker starts the container and executes /bin/bash. Because the container is running interactively and attached to
your terminal (due to the -i and -t flags), you can provide input using your keyboard while the output is logged to your
terminal.
When you type exit to terminate the /bin/bash command, the container stops but is not removed. You can start it
again or remove it.

Docker practice basics

- How to install Docker
- How to use Docker Image
- How to run Docker Container
- What is Dockerfile
- What is DockerHub
- How to build Docker Image from Dockerfile
- How to create an updated Docker Image from Docker Container
- All basic Docker commands

Docker practice basics
How to install Docker

Prerequisites
OS requirements
To install Docker Engine, you need the 64-bit version of one of these Ubuntu versions:
Ubuntu Focal 20.04 (LTS)
Ubuntu Bionic 18.04 (LTS)
Docker Engine is supported on x86_64 (or amd64), armhf, and arm64 architectures.
Uninstall old versions
Older versions of Docker were called docker, docker.io, or docker-engine. If these are installed,
uninstall them:
$ sudo apt-get remove docker docker-engine docker.io containerd runc
It’s OK if apt-get reports that none of these packages are installed.
The contents of /var/lib/docker/, including images, containers, volumes, and networks, are
preserved. If you do not need to save your existing data, and want to start with a clean installation,
refer to the uninstall Docker Engine section at the bottom of this page.

https://docs.docker.com/engine/install/ubuntu/

Docker practice basics

Installation methods

You can install Docker Engine in different ways, depending on your needs:

Most users set up Docker’s repositories and install from them, for ease of installation and upgrade
tasks. This is the recommended approach.

Some users download the DEB package and install it manually and manage upgrades completely
manually. This is useful in situations such as installing Docker on air-gapped systems with no access
to the internet.

In testing and development environments, some users choose to use automated convenience
scripts to install Docker.

https://docs.docker.com/engine/install/ubuntu/

Docker practice basics

Install using the repository
Before you install Docker Engine for the first time on a new host machine, you need to set up the
Docker repository. Afterward, you can install and update Docker from the repository.

SET UP THE REPOSITORY
1. Update the apt package index and install packages to allow apt to use a repository over HTTPS:

$ sudo apt-get update

$ sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg-agent \
software-properties-common

https://docs.docker.com/engine/install/ubuntu/

Docker practice basics

2. Add Docker’s official GPG key:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add –

Verify that you now have the key with the fingerprint 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C
0EBF CD88, by searching for the last 8 characters of the fingerprint.

$ sudo apt-key fingerprint 0EBFCD88

pub rsa4096 2017-02-22 [SCEA]
9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

uid [unknown] Docker Release (CE deb) <docker@docker.com>
sub rsa4096 2017-02-22 [S]

https://docs.docker.com/engine/install/ubuntu/

Docker practice basics https://docs.docker.com/engine/install/ubuntu/

Use the following command to set up the stable repository.
To add the nightly or test repository, add the word nightly or test (or both) after the word stable in
the commands below. Learn about nightly and test channels.

!!! The lsb_release -cs sub-command below returns the name of your Ubuntu distribution, such as
xenial. Sometimes, in a distribution like Linux Mint, you might need to change $(lsb_release -cs) to
your parent Ubuntu distribution. For example, if you are using Linux Mint Tessa, you could use bionic.
Docker does not offer any guarantees on untested and unsupported Ubuntu distributions.

$ sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"

Docker practice basics https://docs.docker.com/engine/install/ubuntu/

INSTALL DOCKER ENGINE

Update the apt package index, and install the latest version of Docker Engine and
containerd, or go to the next step to install a specific version:

$ sudo apt-get update
$ sudo apt-get install docker-ce docker-ce-cli containerd.io

If you have multiple Docker repositories enabled, installing or updating without specifying a version
in the apt-get install or apt-get update command always installs the highest possible version, which
may not be appropriate for your stability needs.

Docker practice basics https://docs.docker.com/engine/install/ubuntu/

INSTALL DOCKER ENGINE

Verify that Docker Engine
is installed correctly
by running the
hello-world image.

$ sudo docker run hello-world

This command downloads a test
image and runs it in a container.

When the container runs, it prints
an informational message and exits.

Docker practice basics https://docs.docker.com/engine/install/ubuntu/

Docker Engine is installed and running.
The docker group is created but no users are added to it.
You need to use sudo to run Docker commands.
Post-installation
There are some steps for Linux to allow non-privileged users to run Docker commands and for
other optional configuration steps.
If you would like to use Docker as a non-root user, you should now consider adding your user to
the “docker” group with something like:

sudo usermod -aG docker student

Remember to log out and back in for this to take effect!

Warning:
Adding a user to the “docker” group grants them the ability to run containers which can be used
to obtain root privileges on the Docker host. Refer to Docker Daemon Attack Surface for more
information.

Docker practice basics (Ubuntu 16 image)
Create directory for Dockerfile(-s) and and dive into it.
$ mkdir dockerfiles
$ cd dockerfiles
Create your file in that directory:
#$ touch Dockerfile
Edit it and add the commands with nano:
$ nano Dockerfile
Finally build it:
$ docker build -t tag .

FROM ubuntu:16.04
RUN apt-get -y update
RUN apt-get -y install apache2
RUN echo 'Hi there, what is love?' > /var/www/html/index.html
RUN echo 'It is just a song ...' > /var/www/html/index.html
CMD ["/usr/sbin/apache2ctl", "-DFOREGROUND"]
EXPOSE 80

Docker practice basics
Create directory for Dockerfile(-s) and and dive into it.
$ mkdir dockerfiles
$ cd dockerfiles
Edit it and add the commands with nano:
$ nano Dockerfile
Finally build it:
$ docker build -t tag .

Docker practice basics
Create directory for Dockerfile(-s) and and dive into it.
$ mkdir dockerfiles
$ cd dockerfiles
Edit it and add the commands with nano:
$ nano Dockerfile
Finally build it:
$ docker build -t tag .

FROM centos:7

RUN yum -y update
RUN yum -y install httpd
RUN echo 'Hi there, what is love?' >
/var/www/html/index.html

CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

EXPOSE 80

Docker practice basics

Docker practice basics

Purging All Unused or Dangling Images, Containers, Volumes, and Networks
Docker provides a single command that will clean up any resources — images,
containers, volumes, and networks — that are dangling (not associated with a
container):

docker system prune

To additionally remove any stopped containers and all unused images (not just
dangling images), add the -a flag to the command:

docker system prune -a

Q & A

Thank you!

