
Infrastructure as a code.
Terraform.
Lection 2.

The remote backend stores Terraform state and may be used to run operations in
Terraform Cloud.

When using full remote operations, operations like terraform plan or terraform
apply can be executed in Terraform Cloud's run environment, with log output
streaming to the local terminal. Remote plans and applies use variable values
from the associated Terraform Cloud workspace.

Terraform Cloud can also be used with local operations, in which case only state is
stored in the Terraform Cloud backend.

https://www.terraform.io/docs/language/settings/backends/remote.html

INFRASTRUCTURE AS CODE. Terraform remote state and backends.

https://www.terraform.io/docs/language/settings/backends/remote.html

INFRASTRUCTURE AS CODE. Implicit and implicit dependencies

Most of the time, Terraform infers dependencies between resources based on the
configuration given, so that resources are created and destroyed in the correct order.
Occasionally, however, Terraform cannot infer dependencies between different parts of
your infrastructure, and you will need to create an explicit dependency with the
depends_on argument.

Prerequisites:

The Terraform CLI, version 0.13 or later.
AWS Credentials configured for use with Terraform.

INFRASTRUCTURE AS CODE.
Terraform.
Implicit dependencies example

The most common source of
dependencies is an implicit
dependency between two
resources or modules.

Create a directory named
learn-terraform-dependencies
and paste this configuration
into a file named main.tf

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "2.69.0"

}
}

}
provider aws {
region = "us-west-1"

}
data "aws_ami" "amazon_linux" {
most_recent = true
owners = ["amazon"]
filter {

name = "name"
values = ["amzn2-ami-hvm-*-x86_64-gp2"]

}
}
resource "aws_instance" "example_a" {
ami = data.aws_ami.amazon_linux.id
instance_type = "t2.micro"

}
resource "aws_instance" "example_b" {
ami = data.aws_ami.amazon_linux.id
instance_type = "t2.micro"

}
resource "aws_eip" "ip" {

vpc = true
instance = aws_instance.example_a.id

}

INFRASTRUCTURE AS CODE. Terraform. Implicit dependencies example

The aws_eip resource type allocates and associates an elastic IP to an EC2 instance. Since the
instance must exist before the Elastic IP can be created and attached, Terraform must ensure
that aws_instance.example_a is created before it creates aws_eip.ip. Meanwhile,
aws_instance.example_b can be created in parallel to the other resources.

First, initialize this directory for use with Terraform.

$ terraform init

Next, apply the configuration.

$ terraform apply

Respond to the confirmation prompt with yes.

INFRASTRUCTURE AS CODE. Terraform. Implicit dependencies example

You can see the order Terraform provisions the resources in the output of the apply step. The output will
look similar to the following. As shown below, Terraform waited until the creation of EC2 instance
example_a was complete before creating the Elastic IP address.
Terraform automatically infers when one resource depends on another by studying the resource attributes
used in interpolation expressions. In the example above, the reference to aws_instance.example_a.id in
the definition of the aws_eip.ip block creates an implicit dependency.
Terraform uses this dependency information to determine the correct order in which to create the different
resources. To do so, it creates a dependency graph of all of the resources defined by the configuration. In
the example above, Terraform knows that the EC2 Instance must be created before the Elastic IP.

INFRASTRUCTURE AS CODE. Terraform. Explicit dependencies example

Implicit dependencies are the primary way that Terraform understands the
relationships between your resources. Sometimes there are dependencies between
resources that are not visible to Terraform, however. The depends_on argument is
accepted by any resource or module block and accepts a list of resources to create
explicit dependencies for.

To illustrate this, assume you have an application running on your EC2 instance that
expects to use a specific Amazon S3 bucket. This dependency is configured inside the
application, and thus not visible to Terraform. You can use depends_on to explicitly
declare the dependency. You can also specify multiple resources in the depends_on
argument, and Terraform will wait until all of them have been created before creating
the target resource.

INFRASTRUCTURE AS CODE. Terraform. Explicit dependencies example
resource "aws_s3_bucket" "example" {
acl = "private"

}

resource "aws_instance" "example_c" {
ami = data.aws_ami.amazon_linux.id
instance_type = "t2.micro"

depends_on = [aws_s3_bucket.example]
}

module "example_sqs_queue" {
source = "terraform-aws-modules/sqs/aws"
version = "2.1.0"

depends_on = [aws_s3_bucket.example, aws_instance.example_c]
}

INFRASTRUCTURE AS CODE. Terraform. Explicit dependencies example
The order in which resources are declared in your configuration files has no effect on the order in
which Terraform creates or destroys them.

This configuration includes a reference to a new module, terraform-aws-modules/sqs/aws.
Modules must be installed before Terraform can use them.

Run terraform get to install the module.

$ terraform get
Downloading terraform-aws-modules/sqs/aws 2.1.0 for example_sqs_queue...
- example_sqs_queue in .terraform/modules/example_sqs_queue

Now run terraform apply to apply the changes.

$ terraform apply

INFRASTRUCTURE AS CODE. Terraform. Explicit dependencies example

Since both the instance and the SQS Queue are dependent upon the S3 Bucket, Terraform waits until the bucket
is created to begin creating the other two resources.

aws_s3_bucket.example: Creating...
aws_s3_bucket.example: Still creating... [10s elapsed]
...Output truncated
aws_s3_bucket.example: Creation complete after 1m0s [id=terraform-20200813175124184300000001]
aws_instance.example_c: Creating...
aws_instance.example_c: Still creating... [10s elapsed]
aws_instance.example_c: Still creating... [20s elapsed]
aws_instance.example_c: Still creating... [30s elapsed]
aws_instance.example_c: Still creating... [40s elapsed]
aws_instance.example_c: Creation complete after 44s [id=i-08a44071a2517179f]
module.example_sqs_queue.aws_sqs_queue.this[0]: Creating...
module.example_sqs_queue.aws_sqs_queue.this[0]: Creation complete after 6s [id=https://sqs.us-west-
1.amazonaws.com/561656980159/terraform-20200813175223563000000002]
module.example_sqs_queue.data.aws_arn.this[0]: Reading...
module.example_sqs_queue.data.aws_arn.this[0]: Read complete after 0s [id=arn:aws:sqs:us-west-1:561656980159:terraform-
20200813175223563000000002]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

INFRASTRUCTURE AS CODE. Terraform. Explicit dependencies example

Both implicit and explicit dependencies affect the order in which resources are destroyed as well as
created.

Clean up the resources you created in this tutorial using Terraform.

$ terraform destroy

Respond to the confirmation prompt with a yes.

Notice that the SQS Queue, Elastic IP address, and the example_c EC2 instance are destroyed
before the resources they depend on are.

INFRASTRUCTURE AS CODE. Terraform. Variables

terraform {
required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 3.27"

}
}

}

provider "aws" {
profile = "default"
region = "us-west-2"

}
resource "aws_instance" "example" {

ami = "ami-
08d70e59c07c61a3a"

instance_type = "t2.micro"
tags = {

Name = "ExampleInstance"
}

}

Prerequisites

According our goal, you should have a directory named
learn-terraform-aws-instance
with the following configuration in a file called main.tf.
Ensure that your configuration matches this,
and that you have run terraform init in the
learn-terraform-aws-instance directory.

INFRASTRUCTURE AS CODE. Terraform. Variables

Set the instance name with a variable

The configuration includes a number of hard-coded values. Terraform variables allow you to write
configuration that is flexible and easier to re-use.

Add a variable to define the instance name.

Create a new file called variables.tf with a block defining a new instance_name variable.

variable "instance_name" {
description = "Value of the Name tag for the EC2 instance"
type = string
default = "ExampleInstance"

}

Note: Terraform loads all files in the current directory ending in .tf, so you can name your
configuration files however you choose.

INFRASTRUCTURE AS CODE. Terraform. Variables

In main.tf, update the aws_instance resource block to use the new variable.

resource "aws_instance" "example" {
ami = "ami-08d70e59c07c61a3a"
instance_type = "t2.micro"

tags = {
- Name = "ExampleInstance"
+ Name = var.instance_name

}
}

Apply the configuration. Respond to the confirmation prompt with a yes

INFRASTRUCTURE AS CODE. Terraform. Variables

In main.tf, update the aws_instance resource block to use the new variable.

resource "aws_instance" "example" {
ami = "ami-08d70e59c07c61a3a"
instance_type = "t2.micro"

tags = {
Name = "ExampleInstance"

Name = var.instance_name
}

}

Apply the configuration. Respond to the confirmation prompt with a yes.
Another one way to set the variable is put it in command line with option –var:

$ terraform apply -var 'instance_name=YetAnotherName'

INFRASTRUCTURE AS CODE. Terraform. Variables

Output EC2 instance configuration

Create a file called outputs.tf in your learn-terraform-aws-instance directory.

Add outputs to the new file for your EC2 instance's ID and IP address.

output "instance_id" {
description = "ID of the EC2 instance"
value = aws_instance.example.id

}

output "instance_public_ip" {
description = "Public IP address of the EC2 instance"
value = aws_instance.example.public_ip

}

INFRASTRUCTURE AS CODE. Terraform. Outputs

Terraform prints output values to the screen when you apply your configuration. Query the
outputs with the terraform output command.

$ terraform output
instance_id = "i-0bf954919ed765de1"
instance_public_ip = "54.186.202.254"

You can use Terraform outputs to connect your Terraform projects with other parts of your
infrastructure, or with other Terraform projects.

INFRASTRUCTURE AS CODE. Terraform. Modules

As you manage your infrastructure with Terraform, you will create increasingly complex
configurations. There is no limit to the complexity of a single Terraform configuration file or
directory, so it is possible to continue writing and updating your configuration files in a single
directory. However, if you do, you may encounter one or more problems:

- Understanding and navigating the configuration files will become increasingly difficult.
- Updating the configuration will become more risky, as an update to one section may cause
unintended consequences to other parts of your configuration.
- There will be an increasing amount of duplication of similar blocks of configuration, for instance
when configuring separate dev/staging/production environments, which will cause an increasing
burden when updating those parts of your configuration.
- You may wish to share parts of your configuration between projects and teams, and will quickly
find that cutting and pasting blocks of configuration between projects is error prone and hard to
maintain.

So main goal of creating and using Terraform modules is to simplify your current workflow.

INFRASTRUCTURE AS CODE. Terraform. Modules

Create Terraform configuration

For example, you will use modules to create an example AWS environment using a Virtual Private Cloud
(VPC) and two EC2 instances. You can create it by manually building the directory structure and files
using the following commands to clone this GitHub repo.

Clone the GitHub repository.

$ git clone https://github.com/hashicorp/learn-terraform-modules.git

Change into that directory in your terminal.

$ cd learn-terraform-modules

Check out the ec2-instances tag into a local branch.

$ git checkout tags/ec2-instances -b ec2-instances

INFRASTRUCTURE AS CODE. Terraform. Modules
Terraform configuration
terraform {

required_providers {
aws = {
source = "hashicorp/aws"

}
}

}
provider "aws" {

region = "us-west-2"
}
module "vpc" {

source = "terraform-aws-modules/vpc/aws"
version = "2.21.0"
name = var.vpc_name
cidr = var.vpc_cidr
azs = var.vpc_azs
private_subnets = var.vpc_private_subnets
public_subnets = var.vpc_public_subnets
enable_nat_gateway = var.vpc_enable_nat_gateway
tags = var.vpc_tags

}

#continue of code

module "ec2_instances" {
source = "terraform-aws-modules/ec2-instance/aws"
version = "2.12.0"

name = "my-ec2-cluster"
instance_count = 2

ami = "ami-0c5204531f799e0c6"
instance_type = "t2.micro"
vpc_security_group_ids = [module.vpc.default_security_group_id]
subnet_id = module.vpc.public_subnets[0]

tags = {
Terraform = "true"
Environment = "dev"

}
}

References

https://learn.hashicorp.com/tutorials/terraform/module-use?in=terraform/modules
https://github.com/adv4000/terraform-lessons/tree/master/Lesson-21

https://learn.hashicorp.com/tutorials/terraform/module-use?in=terraform/modules
https://github.com/adv4000/terraform-lessons/tree/master/Lesson-21

Q & A

Thank you!

